skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Candès, Emmanuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While reliable data-driven decision-making hinges on high-quality labeled data, the acquisition of quality labels often involves laborious human annotations or slow and expensive scientific measurements. Machine learning is becoming an appealing alternative as sophisticated predictive techniques are being used to quickly and cheaply produce large amounts of predicted labels; e.g., predicted protein structures are used to supplement experimentally derived structures, predictions of socioeconomic indicators from satellite imagery are used to supplement accurate survey data, and so on. Since predictions are imperfect and potentially biased, this practice brings into question the validity of downstream inferences. We introduce cross-prediction: a method for valid inference powered by machine learning. With a small labeled dataset and a large unlabeled dataset, cross-prediction imputes the missing labels via machine learning and applies a form of debiasing to remedy the prediction inaccuracies. The resulting inferences achieve the desired error probability and are more powerful than those that only leverage the labeled data. Closely related is the recent proposal of prediction-powered inference [A. N. Angelopoulos, S. Bates, C. Fannjiang, M. I. Jordan, T. Zrnic,Science382, 669–674 (2023)], which assumes that a good pretrained model is already available. We show that cross-prediction is consistently more powerful than an adaptation of prediction-powered inference in which a fraction of the labeled data is split off and used to train the model. Finally, we observe that cross-prediction gives more stable conclusions than its competitors; its CIs typically have significantly lower variability. 
    more » « less
  2. Free, publicly-accessible full text available June 1, 2026
  3. Gao, Xin (Ed.)
    Abstract MotivationConditional testing via the knockoff framework allows one to identify—among a large number of possible explanatory variables—those that carry unique information about an outcome of interest and also provides a false discovery rate guarantee on the selection. This approach is particularly well suited to the analysis of genome-wide association studies (GWAS), which have the goal of identifying genetic variants that influence traits of medical relevance. ResultsWhile conditional testing can be both more powerful and precise than traditional GWAS analysis methods, its vanilla implementation encounters a difficulty common to all multivariate analysis methods: it is challenging to distinguish among multiple, highly correlated regressors. This impasse can be overcome by shifting the object of inference from single variables to groups of correlated variables. To achieve this, it is necessary to construct “group knockoffs.” While successful examples are already documented in the literature, this paper substantially expands the set of algorithms and software for group knockoffs. We focus in particular on second-order knockoffs, for which we describe correlation matrix approximations that are appropriate for GWAS data and that result in considerable computational savings. We illustrate the effectiveness of the proposed methods with simulations and with the analysis of albuminuria data from the UK Biobank. Availability and implementationThe described algorithms are implemented in an open-source Julia package Knockoffs.jl. R and Python wrappers are available as knockoffsr and knockoffspy packages. 
    more » « less